Packet Analysis Using Wireshark

December 13, 2011

By Joseph Gehring
Instructor: Janusz Zalewski

Software Projects with Computer Networks
CNT 4104
Florida Gulf Coast University
Fort Myers, Florida
Fall 2011
1. Introduction

Wireshark is a network protocol analyzer, formerly released under the name Ethereal. As a result of certain copyright restrictions, when the primary developer left his former company, Ethereal changed its name to Wireshark, but remains the same program and has many of the same core developers that worked on Ethereal. This program is able to intercept packets transmitted over the network and compile statistics about network usage, allow the user to view content that is being accessed by other network users, and store usage information for offline access.

As shown in Figure 1 [3], Wireshark allows the user to view a list of captured packets, analyze data about each packet, and view, in hexadecimal format, the data contained in that packet. Wireshark has built-in color-coding features that help the user to identify particular types of network traffic, such as DNS in blue and HTTP in green. Most of the information displayed in the figure can be used to set up sorting filters, simplifying the process of analyzing data. Filters can often be set up to cover anything from protocol type to source or destination address, and even to focus on packets that lack certain data. The versatility of these filters makes sorting through the data much simpler, but the process still requires a keen understanding of what information is displayed and how to interpret it.

Wireshark is an open-source program, with an active support and development community, and held its fourth Annual Developer and User Conference in June 2011 [1]. With the support of this community, Wireshark has expanded over the years to offer support on hundreds of network protocols, with more being added all the time. As a result, Wireshark has established itself as the standard among commercial and educational institutions for network analysis.
Wireshark software has been developed to work on Microsoft Windows, Linux, Solaris, and Mac OS X. Support for all these major operating systems has further increased the market strength of Wireshark. On a Windows network or computer, Wireshark must be used along with the application WinPCap, which stands for Windows Packet Capture. This software allows the capturing of packets in Windows, and those files can then be analyzed using Wireshark. Similarly, Wireshark can be used to view packet information obtained by many other packet capture programs.
2. Definition of the Problem

The goal of this project is to develop an educational report detailing how to install, setup, and operate Wireshark on the Florida Gulf Coast University network, as well as how to use it for data analysis. The greater part of this report focuses on the steps required to accomplish these tasks, culminating in a practical demonstration of Wireshark's capabilities.

For the practical demonstration, this report discusses how to perform wireless packet capture using a lab computer, a Riverbed Technology wireless packet capture device[5], and the FGCU wireless network. Figure 2 shows a generalization of the computer network on which the packet capture is carried out.

![Overall Network Diagram]

Figure 2: Network Configuration
3. Prospective Solution

To address the first portion of the problem, i.e. the installation, setup, and operation of Wireshark, this report provides an uninitiated user with the information necessary to install Wireshark on a computer in the FGCU Computer Science Lab. The second step is to address the installation of the Riverbed Technology wireless packet capture device. Finally, the user is provided with the necessary steps to use the software and hardware together to capture wireless data packets from the FGCU wireless network.

Additionally, the user is shown how to set up filters for viewing specific packets. This includes filtering by protocol type, source address, and destination address. Additionally, one negative filter is introduced, showing how to display packets that lack a certain characteristic.

The information available about each captured packet allows users to perform some very specific and impressive tasks with this software (see Figure 3, from [4]). However, on a switched network, such as the one at FGCU, only a limited number of packets can actually be captured [7]. In particular, on a switched network, wireless capture only reveals traffic to/from the capturing machine and broadcast traffic to the entire network. As a result, it is impossible to view the packets that reveal which websites are being visited by network users or what files are being downloaded to which computer. These limitations restrict the usefulness that Wireshark offers to corporations, but do not completely remove the ability to use the program as a teaching tool. Even with only broadcast traffic, it remains a very possible task to convey the generalities of using Wireshark, show what information is available to a user, and point in the direction of further information that may be useful to someone working on a less restricted network.
Solving Network Mysteries Video Series

Introduction »
1:50 video (min:sec)

The Case of the Missing
Download »
5:06 video (min:sec)

The Case of the Slow Network »
5:44 video (min:sec)

The Case of the Missing DNS
Load Balancer »
9:17 video (min:sec)

The Case of the Slow
iSCSI SAN »
8:06 video (min:sec)

The Case of the Slow Web Server »
5:16 video (min:sec)

The Case of the Disappearing Sales Calls »
5:32 video (min:sec)

Figure 3: Things to do with Wireshark
4. Implementation

4.1. Installation of Wireshark

As stated in Section 3, Wireshark is installed on a computer in the FGCU Computer Science Lab or can be installed on some other computer that is connected to this network. In the following figures, the captions step the user through the installation process (Figure 4 through Figure 19). Although this report provides a full installation guide, additional information can be obtained from the Wireshark User's Guide [2].

![Wireshark Download Page]

Figure 4: Go to wireshark.org and click "Download"
Figure 5: Choose the option for your OS, then download and run the installer

Figure 6: Click "Next"
Figure 7: Click "I Agree"

Figure 8: Click "Next"
Figure 9: Choose desired shortcut options, then click "Next"

Figure 10: Choose your destination folder, then click "Next"
Figure 11: Ensure box is selected to install WinPCap, then click "Install"

Figure 12: Wireshark will begin to install, self-interrupting midway to install WinPCap
Figure 13: Click "Next"

Figure 14: Click "Next"
Figure 15: Click "I Agree"

Figure 16: Click "Install"
Figure 1: WinPCap is now installed. Click "Finish" to resume Wireshark installation.

Figure 2: Click "Next"
4.2. Installation of the Wireless Packet Capture Device

Next, the user needs to install the driver for the Riverbed Technology wireless packet capture device. These steps need to be executed before the device is plugged into the computer. For this project, we are using the Tx version of the device, which looks similar to the image on the left side of Figure 20. The properties of this device, and others in this family of devices, are shown in Figure 21.[5]

Although the Tx offers packet insertion capability, that feature is not used in this project. Additionally, the FGCU network only requires users to have technology compatible with 802.11b/g[6], so the Nx device provides unnecessary features.
In order to use the AirPCap device, the device must be installed so that it can be accessed by Wireshark. The installation process for the necessary drivers and software is covered in Figure 22 through Figure 28, with the specific action listed in the figure captions.

![AirPCap Software Distribution CD]

Figure 21: AirPCap device features

<table>
<thead>
<tr>
<th>Model</th>
<th>AirPCap Classic</th>
<th>AirPCap Tx</th>
<th>AirPCap Nx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full 802.11 Capture</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Wireshark Integration</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-channel Monitoring (requires 2+ adapters)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Packet Transmission</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>External Antenna Connector</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Form Factor</td>
<td>USB</td>
<td>USB</td>
<td>USB</td>
</tr>
<tr>
<td>Frequency Bands</td>
<td>b/g</td>
<td>b/g</td>
<td>a/b/g/n</td>
</tr>
</tbody>
</table>

Figure 22: Insert and run the included CD, then click "Install Driver"
Figure 23: Click "OK"

Figure 24: Click "Next"
Figure 25: Click "I Agree"

Figure 26: Ensure box is only checked if CD version of WinPCap is newer than the version installed with Wireshark. Then click "Install"
Figure 27: Installer will run

Figure 28: Click "Finish"
Now that the software is installed, it is time to connect the hardware to the computer. After the driver installer finishes, close the program and eject the disc. After installation, the popup window shown in Figure 29 guides the user through connecting the hardware. These instructions should only be necessary in the event that Windows does not recognize the device. This is unlikely, because the required drivers were just installed.

![Congratulations, you have successfully installed the AirPcap Driver.](image)

Upon completion of the software installation, only reboot the system if requested to do so. The installation is now complete and you can install your AirPcap device.

The AirPcap driver has support for Windows 2000/XP/2008/Vista/2008 (32/64 bit) for all of the USB AirPcap adapters (Classic, Tx, Ex, and Nx).

Although AirPcap N is no longer available, it is supported by the AirPcap Driver on the 32-bit version of these operating systems. See AirPcap.Net for a USB alternative to AirPcap N.

Depending on the operating system version when you plug in the adapter for the first time, Windows may show the "Found New Hardware Wizard." If the Found New Hardware Wizard appears, answer these questions in the following way:

- **Can Windows connect to Windows Update to search for software?**
 - Select **No, not this time**

- **What do you want the wizard to do?**
 - Select **Install the software automatically**

![Figure 29: Automatic popup window after installation finishes, offering information on connecting the hardware.](image)

4.3. Using Wireshark for Wireless Packet Capture

Now that the software is installed and the hardware is connected, it is time to start using Wireshark. Open the program using one of the shortcut options selected previously, or launching the ".exe" file from the installation directory. Figures 30-32 show how to perform a capture session using the WinPCap device.
Figure 30: In the Capture box, select the AirPCap device.

Figure 31: Capture should begin automatically. If no packets are being displayed, you may need to minimize then maximize the window.
Figure 32: Sample capture data

In the capture window, Figure 32, several key pieces of data are available. "Time" represents the number of seconds that passed after capture was initiated until that packet was caught. "Source" and "Destination" provide the user with key packet information, and may include a specific IP address, a router, or a broadcast message. The color coding for each packet is determined by the "Protocol" type, and makes certain common protocols easier to identify.

To test this program on a computer outside of the designated lab, or without the WinPCap device, it may be necessary to change another setting in Wireshark. The default capture mode of Wireshark is "promiscuous," but the Windows OS may not allow the user to operate a wireless network card in such a fashion [7]. To perform wireless packet capture using an integrated wireless networking card on a Windows-based computer, it will likely be necessary to change the promiscuous mode setting in Wireshark. From the application start screen, Figure 30, choose "Capture Options." In the options window shown in Figure 33, deselect the checkbox labeled "Capture packets in promiscuous mode," then click "Start." This should allow the capture to take place, but may result in a less robust capture session.
4.4. Capture Filters

As specified in Section 3, it is possible to apply a variety of filters to the Wireshark capture data. By doing so, it becomes possible to reduce an unmanageable amount of data down to only that information applicable to the current problem. All these filters are entered in the "Filter" text box, towards the top left of the capture window, shown in Figures 31 and 32.

When it is necessary to view only traffic to or from a particular machine, there are three filters which can be applied, depending on the specific need. To view only that traffic flowing to the machine with IP address 10.100.37.49, apply the filter "ip.dst == 10.100.37.49". For traffic from this machine, replace "ip.dest" with "ip.src" in the preceding filter. Using "ip.addr" will show traffic flowing in both directions, i.e. to and from the specified IP address. Similarly, the traffic to a specified machine can be filtered out using a negative filter, such as "ip.dst != 10.100.37.49".

Filtering by protocol type is incredibly simple. Simply type the protocol name into the filter box and click "Apply". A few examples include "arp," "http," or "tcp." Other filter types exist, and are described in detail in references [8] and [9].
4.5. Packet Analysis

To show how to perform a detailed analysis of captured packets, data from a 10-minute capture session is used. During the course of this capture session, nearly 200,000 packets were captured, of strictly broadcast type traffic (Figure 34). Filters can be applied to reduce the volume of information to cover only the packets of interest.

Applying the filter "cups" limits the packets to only those packets using the Common Unix Printing System protocol. On this capture session, the number of packets is reduced to 52 packets, significantly less than 1% of the original number of packets. The filtered list is shown in Figure 35, with the new packet count and filter circled in red.

This filter reduces the capture session to a small collection of packets related to network printers. Double-clicking on any one of these packets will open the packet information in a new window, making it easier to view the available data. A larger view of packet number 465 is shown in Figure 36. The frame number and IP addresses of the source and destination are circled in red.
Figure 35: Capture with CUPS filter applied

Figure 36: Data for Packet Number 465
Within the 52 CUPS packets, there are 4 unique source IP addresses. By viewing at least one packet for each address, it is apparent that three of the four computers listed are Apple brand computers, specifically MacBook and MacBook Pro series laptops (Figure 37). The element to take note of in this analysis is that Apple devices have a feature built in to them, called AirPrint, which allows wireless devices to connect automatically to printers on the same network. Similarly, Apple devices connected to a printer will wirelessly share that printer with other Apple devices automatically. [10]

Figure 37: CUPS Protocol Data for Each of Four Unique IP Addresses

This analysis shows how Apple brand computers connect to printers on the FGCU network, through both wired and wireless connections. Although the packets containing specific print jobs are not available over the switched network, sufficient data is available in the broadcast traffic to permit a useful analysis. Also within these packets is the type of printer to which each device is connected, allowing further analysis of the makes and models of printers connected to the network.
5. Conclusion

 This project has proven successful, although this may be attributable in part to the simple goals established at the outset. Wireshark, WinPCap, and the AirPCap device have been successfully installed and tested on a computer in the FGCU CS Lab. Figures 31 and 32 above show actual captures that took place in the aforementioned lab using the Tx device. However, seeing that these actions can be performed in the school computing environment, it becomes apparent that work remains to be done to employ this technology at its full potential.

 Because the FGCU wireless network is a switched network, the capture sessions may be limited to broadcast traffic and that traffic destined for and departing from the computer on which Wireshark is running [7]. This is an obvious limitation of the program, and may be overcome by setting up a smaller wireless network within the lab, and which does not include the restrictive switching.

 Additionally, no packet insertion was performed during this project. Initially, the hardware ordered for the project was the Classic AirPCap device, which does not provide such a capability. When the order was changed to the Tx device, and by the time that device was received, there did not remain sufficient leeway in the project timeline to accommodate the additional research and testing to employ the packet insertion capability.

 Future work with this software could include packet capture at a network switch, rather than over the wireless connection, to better monitor the network's traffic flow, or work with packet insertion using the Tx device. Even without these elements included, this report provides a new user with sufficient information to begin basic packet capture and analysis.
6. References

 http://www.wireshark.org/docs/wsug_html_chunked/
[3] Wireshark Foundation, 16 October 2011,
 http://www.wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.html#ChIntroFig1
[5] Riverbed Technology, 20 November 2011,